An introduction to analysis and design of feedback control systems, including classical control theory in the time and frequency domain. Modeling of physical, biological, and information systems using linear and nonlinear differential equations. Linear vs. nonlinear models, and local vs. global behavior, Input/output response, modeling and model reduction, Stability and performance of interconnected systems, including use of block diagrams, Bode plots, the Nyquist criterion, and Lyapunov functions. Robustness and uncertainty management in feedback systems through stochastic and deterministic methods. Basic principles of feedback and its use as a tool for altering the dynamics of systems and managing uncertainty methods. Introductory random processes, Kalman filtering, and norms of signals and systems.