Derya Baran

Calculated based on number of publications stored in Pure and citations from Scopus
20082024

Research activity per year

Personal profile

Research Overview

Professor Baran's research interests lie in the area of solution processable organic/hybrid soft materials for electronic devices. Such soft semiconductor materials possess a viable platform for printed, large area, stretchable and wearable electronics that can be used as solar cells, smart windows, OFETs, thermoelectrics, sensors and bio-electronics. ​Professor Baran is particularly interested in interface engineering for organic/hybrid solar cells, transparent solar cells for building integrated photovoltaics and stability/degradation studies for long lifetime organic solar cells. She has led projects on i) conjugated polymers for electrochromic devices; ii) non-fullerene acceptors for organic solar cells; iii) multi-component and multi-layered solar cell devices; and iv) understanding the correlation between recombination and nano-morphology in solution processed solar cells. Professor Baran aims to expand the applications of solution processable organic/hybrid semiconductors and to explore their limits in organic/hybrid thermoelectric devices and bio-electronics in the future.

Key Research Areas

Electrical Engineering, Chemical and Biological Engineering, Chemical Science, Material Science and Engineering

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy
  • SDG 13 - Climate Action

Fingerprint

Dive into the research topics where Derya Baran is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or