TY - JOUR
T1 - π-Bridge-Independent 2-(Benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Solar Cells
AU - Wang, Kai
AU - Firdaus, Yuliar
AU - Babics, Maxime
AU - Cruciani, Federico
AU - Saleem, Qasim
AU - El Labban, Abdulrahman
AU - Alamoudi, Maha A
AU - Marszalek, Tomasz
AU - Pisula, Wojciech
AU - Laquai, Frédéric
AU - Beaujuge, Pierre
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): CRG_R2_13_BEAU_KAUST_1
Acknowledgements: This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No.CRG_R2_13_BEAU_KAUST_1. The authors acknowledge concurrent support under Baseline Research Funding from KAUST. The authors thank KAUST ACL for technical support in the mass spectrometry analyses. W.P. and T.M. gratefully acknowledge the staff of beamline
9 at the DELTA electron storage ring in Dortmund for providing beamtime and technical support for the GIWAXS measurements. W.P. and T.M. thank Marcelina Rojek for technical support in the GIWAXS measurements.
PY - 2016/3/28
Y1 - 2016/3/28
N2 - Molecular acceptors are promising alternatives to fullerenes (e.g. PC61/71BM) in the fabrication of high-efficiency bulk-heterojunction (BHJ) solar cells. While solution-processed polymer-fullerene BHJ devices have recently met the 10% efficiency threshold, molecular acceptors have yet to prove comparably efficient with polymer donors. At this point in time, it is important to forge a better understanding of the design parameters that directly impact small-molecule (SM) acceptor performance in BHJ solar cells. In this report, we show that 2-(benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile (BM)-terminated SM acceptors can achieve efficiencies as high as 5.3% in BHJ solar cells with the polymer donor PCE10. Through systematic device optimization and characterization studies, we find that the nonfull-erene analogues (FBM, CBM and CDTBM) all perform comparably well, independent of the molecular structure and electronics of the π-bridge that links the two electron-deficient BM end groups. With estimated electron affinities within range of those of common fullerenes (4.0-4.3 eV), and a wider range of ionization potentials (6.2-5.6 eV), the SM acceptors absorb in the visible spectrum and effectively contribute to the BHJ device photocurrent. BM-substituted SM acceptors are promising alterna-tives to fullerenes in solution-processed BHJ solar cells.
AB - Molecular acceptors are promising alternatives to fullerenes (e.g. PC61/71BM) in the fabrication of high-efficiency bulk-heterojunction (BHJ) solar cells. While solution-processed polymer-fullerene BHJ devices have recently met the 10% efficiency threshold, molecular acceptors have yet to prove comparably efficient with polymer donors. At this point in time, it is important to forge a better understanding of the design parameters that directly impact small-molecule (SM) acceptor performance in BHJ solar cells. In this report, we show that 2-(benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile (BM)-terminated SM acceptors can achieve efficiencies as high as 5.3% in BHJ solar cells with the polymer donor PCE10. Through systematic device optimization and characterization studies, we find that the nonfull-erene analogues (FBM, CBM and CDTBM) all perform comparably well, independent of the molecular structure and electronics of the π-bridge that links the two electron-deficient BM end groups. With estimated electron affinities within range of those of common fullerenes (4.0-4.3 eV), and a wider range of ionization potentials (6.2-5.6 eV), the SM acceptors absorb in the visible spectrum and effectively contribute to the BHJ device photocurrent. BM-substituted SM acceptors are promising alterna-tives to fullerenes in solution-processed BHJ solar cells.
UR - http://hdl.handle.net/10754/600521
UR - http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b00131
UR - http://www.scopus.com/inward/record.url?scp=84964788987&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.6b00131
DO - 10.1021/acs.chemmater.6b00131
M3 - Article
SN - 0897-4756
VL - 28
SP - 2200
EP - 2208
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 7
ER -