1.3 μm submilliamp threshold quantum dot micro-lasers on Si

Yating Wan, Justin Norman, Qiang Li, M. J. Kennedy, Di Liang, Chong Zhang, Duanni Huang, Zeyu Zhang, Alan Y. Liu, Alfredo Torres, Daehwan Jung, Arthur C. Gossard, Evelyn L. Hu, Kei May Lau, John E. Bowers

Research output: Contribution to journalArticlepeer-review

171 Scopus citations

Abstract

As a promising integration platform, silicon photonics need on-chip laser sources that dramatically improve capability, while trimming size and power dissipation in a cost-effective way for volume manufacturability. Currently, direct heteroepitaxial growth of III–V laser structures on Si using quantum dots as the active region is a vibrant field of research, with the potential to demonstrate low-cost, high-yield, long-lifetime, and high-temperature devices. Ongoing work is being conducted to reduce the power consumption, maximize the operating temperature, and switch from miscut Si substrates toward the so-called exact (001) Si substrates that are standard in microelectronics fabrication. Here, we demonstrate record-small electrically pumped micro-lasers epitaxially grown on industry standard (001) silicon substrates. Continuous-wave lasing up to 100°C was demonstrated at 1.3 μm communication wavelength. A submilliamp threshold of 0.6 mA was achieved for a micro-laser with a radius of 5 μm. The thresholds and footprints are orders of magnitude smaller than those previously reported lasers epitaxially grown on Si.
Original languageEnglish (US)
Pages (from-to)940-944
Number of pages5
JournalOptica
Volume4
Issue number8
DOIs
StatePublished - Aug 20 2017
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of '1.3 μm submilliamp threshold quantum dot micro-lasers on Si'. Together they form a unique fingerprint.

Cite this