A 24 GHz CMOS oscillator transmitter with an inkjet printed on-chip antenna

Farhan A. Ghaffar, Shuai Yang, Hammad M. Cheema, Atif Shamim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

CMOS based RF circuits have demonstrated efficient performance over the decades. However, one bottle neck with this technology is its lossy nature for passive components such as inductors, antennas etc. Due to this drawback, passives are either implemented off chip or the designers work with the inefficient passives. This problem can be alleviated by using inkjet printing as a post process on CMOS chip. In this work, we demonstrate inkjet printing of a patterned polymer (SU8) layer on a 24 GHz oscillator chip to isolate the lossy Si substrate from the passives which are inkjet printed on top of the SU8 layer. As a proof of concept, a monopole antenna is printed on top of the SU8 layer integrating it with the oscillator through the exposed RF pads to realize an oscillator transmitter. The proposed hybrid fabrication technique can be extended to multiple dielectric and conductive printed layers to demonstrate complete RF systems on CMOS chips which are efficient, cost-effective and above all small in size. © 2016 IEEE.
Original languageEnglish (US)
Title of host publication2016 IEEE MTT-S International Microwave Symposium (IMS)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISBN (Print)9781509006984
DOIs
StatePublished - Aug 15 2016

Fingerprint

Dive into the research topics of 'A 24 GHz CMOS oscillator transmitter with an inkjet printed on-chip antenna'. Together they form a unique fingerprint.

Cite this