A comprehensive experimental and kinetic modeling study of laminar flame propagation of ammonia blended with propene

A. M. Elbaz*, B. R. Giri, K. P. Shrestha, Omar Z. Arab, Aamir Farooq, Fabian Mauss, W. L. Roberts

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Enhancement of ammonia reactivity is crucial for potential applications of ammonia as an engine and gas turbine fuel. A common strategy for improving ammonia's poor reactivity is blending it with more reactive fuels like hydrogen and methane. However, fundamental studies of ammonia combustion with higher hydrocarbons and key intermediate oxidation species of higher alkanes such as propene do not exist. Thus, this work presents an effort to study the laminar flame propagation of ammonia blended with propene. Laminar burning velocity (SL) of NH3/C3H6/air mixtures was measured at 298 K, pressures up to 5 bar, equivalence ratios of 0.7 to 1.3, and various propene to ammonia ratios (i.e.,% propene to ammonia mole fraction, xC3H6 = 10 to 50) in a high-pressure spherical propagating flame vessel. A kinetic model was developed based on our previous work to characterize the combustion behavior of NH3/C3H6/air mixture. The model reasonably agrees with the experimental data and follows the observed trends very well. The results showed that blending NH3 with C3H6 positively enhanced SL of NH3 by promoting the formation of key radicals e.g., O, OH, and H. Relative to a neat ammonia/air mixture, co-firing ammonia with propene leads to a reduced pressure dependence of the laminar burning velocity. However, the reaction H + O2(+M)=HO2(+M) leads to strong pressure dependency of lean NH3/C3H6 mixtures compared to rich mixtures. The model reveals that besides fuel-NO coming from NH3, prompt NO also actively contributes to NO formation. It is seen that N2O formation is significantly suppressed with increasing pressure or increasing C3H6 content in the fuel blend. In contrast to NO and N2O, NO2 concentration increases slightly with an increase in pressure. The reported experimental data and model will be useful in understanding the interaction between NH3 and alkenes.

Original languageEnglish (US)
Article number112791
JournalCombustion and Flame
Volume253
DOIs
StatePublished - Jul 2023

Keywords

  • Ammonia
  • Chemical kinetic model
  • Laminar burning velocity
  • Propene
  • Spherical propagating flame

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'A comprehensive experimental and kinetic modeling study of laminar flame propagation of ammonia blended with propene'. Together they form a unique fingerprint.

Cite this