TY - JOUR
T1 - A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
AU - Atef, Nour
AU - Kukkadapu, Goutham
AU - Mohamed, Samah
AU - Rashidi, Mariam Al
AU - Banyon, Colin
AU - Mehl, Marco
AU - Heufer, Karl Alexander
AU - Nasir, Ehson Fawad
AU - Alfazazi, Adamu
AU - Das, Apurba K.
AU - Westbrook, Charles K.
AU - Pitz, William J.
AU - Lu, Tianfeng
AU - Farooq, Aamir
AU - Sung, Chih-Jen
AU - Curran, Henry J.
AU - Sarathy, Mani
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors are grateful of insightful scientific discussions with Dr. Zhandong Wang (KAUST), Dr. Kuiwen Zhang (NUIG), Dr. John Bugler (NUIG), and Dr. Jihad Badra (Saudi Aramco). The presented work was supported by Saudi Aramco under the FUELCOM program and by the King Abdullah University of Science and Technology (KAUST) with competitive research funding given to the Clean Combustion Research Center (CCRC). The work at UCONN was supported by the National Science Foundation under Grant No. CBET-1402231. The work at LLNL was supported by the U.S. Department of Energy, Vehicle Technologies Office, program managers Gurpreet Singh and Leo Breton and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratories under contract DE-AC52-07NA27344
PY - 2017/2/5
Y1 - 2017/2/5
N2 - Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.
AB - Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.
UR - http://hdl.handle.net/10754/622881
UR - http://www.sciencedirect.com/science/article/pii/S0010218016304059
UR - http://www.scopus.com/inward/record.url?scp=85011582872&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2016.12.029
DO - 10.1016/j.combustflame.2016.12.029
M3 - Article
SN - 0010-2180
VL - 178
SP - 111
EP - 134
JO - Combustion and Flame
JF - Combustion and Flame
ER -