A COMPUTATIONAL ASSESSMENT OF COMBUSTION SUBMODELS FOR PREDICTIVE SIMULATIONS OF PRE-CHAMBER COMBUSTION ENGINES

Mickael Silva, Xinlei Liu, Ponnya Hlaing, Emre Cenker, James Turner, Hong G. Im

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Pre-chamber combustion (PCC) modeling has been progressing in recent years, while there are lingering questions on fundamental modeling aspects, whether a flame-based or an ignition-based model predicts the combustion with higher fidelity. This mode of ignition concept is known to enable a stable engine operation at ultralean conditions with a short combustion duration, thus enhancing engine efficiency. The current work utilizes computational fluid dynamics to assess well-known combustion models: multi-zone well-stirred reactor (MZ-WSR) and G-Equation. The former models combustion as an ignition-based phenomenon while the latter as a flame propagation type of combustion. A pre-chamber containing twelve nozzles divided into two layers on a narrow throat was chosen. The jets from the two layers of nozzles and the local thermodynamic conditions differ substantially, which makes it a suitable configuration for assessing the predictive capabilities of distinct combustion models. The fuel utilized was methane and the global air-fuel ratio (λ) was varied, ranging from global-λ of 1.6, 1.8, and 2.0, and the total fuel injected through the pre-chamber was varied for one of the cases (3%, 7%, and 13%). The results suggest that both combustion models can potentially match experimental engine performance data upon appropriate calibration; however, fundamental differences in jet topology arise since the G-Equation formulation accounts for turbulence-chemistry interaction, while MZ-WSR does not.

Original languageEnglish (US)
Title of host publicationProceedings of ASME 2022 ICE Forward Conference, ICEF 2022
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791886540
DOIs
StatePublished - 2022
EventASME 2022 ICE Forward Conference, ICEF 2022 - Indianapolis, United States
Duration: Oct 16 2022Oct 19 2022

Publication series

NameProceedings of ASME 2022 ICE Forward Conference, ICEF 2022

Conference

ConferenceASME 2022 ICE Forward Conference, ICEF 2022
Country/TerritoryUnited States
CityIndianapolis
Period10/16/2210/19/22

Keywords

  • G-Equation
  • MZ-WSR
  • Pre-chamber

ASJC Scopus subject areas

  • Automotive Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A COMPUTATIONAL ASSESSMENT OF COMBUSTION SUBMODELS FOR PREDICTIVE SIMULATIONS OF PRE-CHAMBER COMBUSTION ENGINES'. Together they form a unique fingerprint.

Cite this