TY - JOUR
T1 - A fast, accurate, and generalisable heuristic-based negation detection algorithm for clinical text
AU - Slater, Luke T.
AU - Bradlow, William
AU - Motti, Dino FA
AU - Hoehndorf, Robert
AU - Ball, Simon
AU - Gkoutos, Georgios V.
N1 - Publisher Copyright:
© 2021 The Author(s)
PY - 2021/3
Y1 - 2021/3
N2 - Negation detection is an important task in biomedical text mining. Particularly in clinical settings, it is of critical importance to determine whether findings mentioned in text are present or absent. Rule-based negation detection algorithms are a common approach to the task, and more recent investigations have resulted in the development of rule-based systems utilising the rich grammatical information afforded by typed dependency graphs. However, interacting with these complex representations inevitably necessitates complex rules, which are time-consuming to develop and do not generalise well. We hypothesise that a heuristic approach to determining negation via dependency graphs could offer a powerful alternative. We describe and implement an algorithm for negation detection based on grammatical distance from a negatory construct in a typed dependency graph. To evaluate the algorithm, we develop two testing corpora comprised of sentences of clinical text extracted from the MIMIC-III database and documents related to hypertrophic cardiomyopathy patients routinely collected at University Hospitals Birmingham NHS trust. Gold-standard validation datasets were built by a combination of human annotation and examination of algorithm error. Finally, we compare the performance of our approach with four other rule-based algorithms on both gold-standard corpora. The presented algorithm exhibits the best performance by f-measure over the MIMIC-III dataset, and a similar performance to the syntactic negation detection systems over the HCM dataset. It is also the fastest of the dependency-based negation systems explored in this study. Our results show that while a single heuristic approach to dependency-based negation detection is ignorant to certain advanced cases, it nevertheless forms a powerful and stable method, requiring minimal training and adaptation between datasets. As such, it could present a drop-in replacement or augmentation for many-rule negation approaches in clinical text-mining pipelines, particularly for cases where adaptation and rule development is not required or possible.
AB - Negation detection is an important task in biomedical text mining. Particularly in clinical settings, it is of critical importance to determine whether findings mentioned in text are present or absent. Rule-based negation detection algorithms are a common approach to the task, and more recent investigations have resulted in the development of rule-based systems utilising the rich grammatical information afforded by typed dependency graphs. However, interacting with these complex representations inevitably necessitates complex rules, which are time-consuming to develop and do not generalise well. We hypothesise that a heuristic approach to determining negation via dependency graphs could offer a powerful alternative. We describe and implement an algorithm for negation detection based on grammatical distance from a negatory construct in a typed dependency graph. To evaluate the algorithm, we develop two testing corpora comprised of sentences of clinical text extracted from the MIMIC-III database and documents related to hypertrophic cardiomyopathy patients routinely collected at University Hospitals Birmingham NHS trust. Gold-standard validation datasets were built by a combination of human annotation and examination of algorithm error. Finally, we compare the performance of our approach with four other rule-based algorithms on both gold-standard corpora. The presented algorithm exhibits the best performance by f-measure over the MIMIC-III dataset, and a similar performance to the syntactic negation detection systems over the HCM dataset. It is also the fastest of the dependency-based negation systems explored in this study. Our results show that while a single heuristic approach to dependency-based negation detection is ignorant to certain advanced cases, it nevertheless forms a powerful and stable method, requiring minimal training and adaptation between datasets. As such, it could present a drop-in replacement or augmentation for many-rule negation approaches in clinical text-mining pipelines, particularly for cases where adaptation and rule development is not required or possible.
KW - Text mining negation detection context disambiguation clinical information extraction
UR - http://www.scopus.com/inward/record.url?scp=85099505804&partnerID=8YFLogxK
U2 - 10.1016/j.compbiomed.2021.104216
DO - 10.1016/j.compbiomed.2021.104216
M3 - Article
C2 - 33484944
AN - SCOPUS:85099505804
SN - 0010-4825
VL - 130
JO - Computers in Biology and Medicine
JF - Computers in Biology and Medicine
M1 - 104216
ER -