TY - JOUR
T1 - A framework to quantify uncertainty in simulations of oil transport in the ocean
AU - Gonçalves, Rafael C.
AU - Iskandarani, Mohamed
AU - Srinivasan, Ashwanth
AU - Thacker, W. Carlisle
AU - Chassignet, Eric
AU - Knio, Omar
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research was made possible in part by a grant from BP/The Gulf of Mexico Research Initiative to the Deep-C and CARTHE Consortia, by the Office of Naval Research, award N00014-101-0498, and by the US Department of the Interior, Bureau of Ocean Energy Management under the cooperative agreement MC12AC00019. R. Goncalves acknowledges support by the Brazilian Ministry of Science, Technology and Innovation (CNPq-Council for Scientific and Technological Development) through a PHD scholarship from the Science Without Borders program, grant 202263/2012-6. O. Knio acknowledges partial support from the US Department of Energy, Office of Advanced Scientific Computing Research, under award DE-SC0008789. This research was conducted in collaboration with and using the resources of the University of Miami Center for Computational Science. The outputs of the DeepC Oil Model used here are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC). [Available at https://data.gulfresearchinitiative.org/data/R1.x138.077:0026.]
PY - 2016/4/1
Y1 - 2016/4/1
N2 - An uncertainty quantification framework is developed for the DeepC Oil Model based on a nonintrusive polynomial chaos method. This allows the model's output to be presented in a probabilistic framework so that the model's predictions reflect the uncertainty in the model's input data. The new capability is illustrated by simulating the far-field dispersal of oil in a Deepwater Horizon blowout scenario. The uncertain input consisted of ocean current and oil droplet size data and the main model output analyzed is the ensuing oil concentration in the Gulf of Mexico. A 1331 member ensemble was used to construct a surrogate for the model which was then mined for statistical information. The mean and standard deviations in the oil concentration were calculated for up to 30 days, and the total contribution of each input parameter to the model's uncertainty was quantified at different depths. Also, probability density functions of oil concentration were constructed by sampling the surrogate and used to elaborate probabilistic hazard maps of oil impact. The performance of the surrogate was constantly monitored in order to demarcate the space-time zones where its estimates are reliable. © 2016. American Geophysical Union.
AB - An uncertainty quantification framework is developed for the DeepC Oil Model based on a nonintrusive polynomial chaos method. This allows the model's output to be presented in a probabilistic framework so that the model's predictions reflect the uncertainty in the model's input data. The new capability is illustrated by simulating the far-field dispersal of oil in a Deepwater Horizon blowout scenario. The uncertain input consisted of ocean current and oil droplet size data and the main model output analyzed is the ensuing oil concentration in the Gulf of Mexico. A 1331 member ensemble was used to construct a surrogate for the model which was then mined for statistical information. The mean and standard deviations in the oil concentration were calculated for up to 30 days, and the total contribution of each input parameter to the model's uncertainty was quantified at different depths. Also, probability density functions of oil concentration were constructed by sampling the surrogate and used to elaborate probabilistic hazard maps of oil impact. The performance of the surrogate was constantly monitored in order to demarcate the space-time zones where its estimates are reliable. © 2016. American Geophysical Union.
UR - http://hdl.handle.net/10754/621372
UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/2015JC011311
UR - http://www.scopus.com/inward/record.url?scp=84962667791&partnerID=8YFLogxK
U2 - 10.1002/2015JC011311
DO - 10.1002/2015JC011311
M3 - Article
SN - 2169-9275
VL - 121
SP - 2058
EP - 2077
JO - Journal of Geophysical Research: Oceans
JF - Journal of Geophysical Research: Oceans
IS - 4
ER -