TY - JOUR
T1 - A generalized partially stirred reactor model for turbulent closure
AU - Quadarella, Erica
AU - Péquin, Arthur
AU - Stagni, Alessandro
AU - Parente, Alessandro
AU - Faravelli, Tiziano
AU - Im, Hong G.
N1 - KAUST Repository Item: Exported on 2023-08-01
Acknowledgements: The authors would like to thank Professor James Sutherland at University of Utah for providing the DNS data, and Professor Mauro Valorani, Drs. Pietro Ciottoli and Riccardo Malpica Galassi for helpful discussion on CSP analysis. The work was sponsored by King Abdullah University of Science and Technology and Politecnico di Milano. A. Péquin acknowledges the financial support of the Fonds National de la Recherche Scientifique (FRS-FNRS) through an ASPIRANT fellowship. This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 714605.
PY - 2022/10/26
Y1 - 2022/10/26
N2 - A generalized Partially-Stirred Reactor (PaSR) model is presented in this work based on the inclusion of multiple chemical times. The PaSR model has shown promising results at modelling turbulence-chemistry interaction in Large-Eddy Simulations (LES) and Reynolds-Averaged Navier-Stokes (RANS), providing an extension of the well-known Eddy Dissipation Concept (EDC). PaSR model divides the computational domain into reactive and non-reactive parts. The factor defining this partition is expressed as a function of the system characteristic chemical and mixing times. However, the estimation of these factors, particularly the chemical one, is often oversimplified. The approach proposed in this study seeks to include in the PaSR model the whole set of chemical times involved in the reactive system. Besides, the concept of fine structures, first introduced in the EDC and often adopted also in the PaSR model to characterize the evolution of chemistry in the reactive part of the fluid, is here abandoned in favour of direct manipulation of species production rates. The mean source term is formulated according to the new generalized model through a modal decomposition of the Jacobian matrix. The method is validated a priori with DNS data of a syngas non-premixed jet flame, whose filtered data represent the validation benchmark. A good agreement is found between the new PaSR model and the filtered data for all species at different filter widths. Comparison with the single time scale based model clearly shows the limitations of the old standard approach and the necessity of including the whole spectrum of chemical times for a more comprehensive description of turbulence-chemistry interaction. A thorough analysis with the time scale participation index reveals the complexity of reaction rates contributions to the development of a specific time scale, underlying the importance of developing a model able to inherit all kinetic pathways in the turbulent closure.
AB - A generalized Partially-Stirred Reactor (PaSR) model is presented in this work based on the inclusion of multiple chemical times. The PaSR model has shown promising results at modelling turbulence-chemistry interaction in Large-Eddy Simulations (LES) and Reynolds-Averaged Navier-Stokes (RANS), providing an extension of the well-known Eddy Dissipation Concept (EDC). PaSR model divides the computational domain into reactive and non-reactive parts. The factor defining this partition is expressed as a function of the system characteristic chemical and mixing times. However, the estimation of these factors, particularly the chemical one, is often oversimplified. The approach proposed in this study seeks to include in the PaSR model the whole set of chemical times involved in the reactive system. Besides, the concept of fine structures, first introduced in the EDC and often adopted also in the PaSR model to characterize the evolution of chemistry in the reactive part of the fluid, is here abandoned in favour of direct manipulation of species production rates. The mean source term is formulated according to the new generalized model through a modal decomposition of the Jacobian matrix. The method is validated a priori with DNS data of a syngas non-premixed jet flame, whose filtered data represent the validation benchmark. A good agreement is found between the new PaSR model and the filtered data for all species at different filter widths. Comparison with the single time scale based model clearly shows the limitations of the old standard approach and the necessity of including the whole spectrum of chemical times for a more comprehensive description of turbulence-chemistry interaction. A thorough analysis with the time scale participation index reveals the complexity of reaction rates contributions to the development of a specific time scale, underlying the importance of developing a model able to inherit all kinetic pathways in the turbulent closure.
UR - http://hdl.handle.net/10754/685230
UR - https://linkinghub.elsevier.com/retrieve/pii/S1540748922003583
UR - http://www.scopus.com/inward/record.url?scp=85141123760&partnerID=8YFLogxK
U2 - 10.1016/j.proci.2022.08.061
DO - 10.1016/j.proci.2022.08.061
M3 - Article
SN - 1540-7489
JO - Proceedings of the Combustion Institute
JF - Proceedings of the Combustion Institute
ER -