Abstract
This article presents a power-efficient hybrid energy-harvesting system that scavenges energy from solar, vibration, and radio frequency (RF) energy sources and converts into regulated output dc voltage courtesy buck-boost dc-dc converter. The proposed architecture incorporates tetra-paths for maintaining high power conversion efficiency (PCE) over extended input power range (-10 to 30 dBm). A time-domain maximum power point tracking technique is proposed for solar energy harvester. A high-efficiency full wave rectifier is designed for triboelectric rectifier. A 5.8-GHz RF-dc converter with adaptive matching is proposed to increase dynamic range of the input power. The chip is implemented in 0.18-μm bipolar-CMOS-DMOS process. The die area of the chip is 2.8 mm × 5.0 mm, including the pads. The solar and triboelectric energy harvesters achieve a measured peak efficiencies of 75.4% and 92.3%, respectively. The high-power 5.8-GHz RF-dc converter achieves measured PCE of 76% at 30 dBm input power. The low-power dual-band RF-dc converter operating at 900 MHz and 2.4 GHz obtains measured peak efficiencies of 73% and 71.9% at 0 dBm input, respectively. The buck-boost dc-dc converter employed in the proposed hybrid energy harvesting system achieves a measured peak PCE of 94.5%.
Original language | English (US) |
---|---|
Pages (from-to) | 11148-11162 |
Number of pages | 15 |
Journal | IEEE Transactions on Power Electronics |
Volume | 36 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1 2021 |
Externally published | Yes |