A Joint inversion-segmentation approach to assisted seismic interpretation

Matteo Ravasi, Claire Emma Birnie

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Summary Structural seismic interpretation and quantitative characterization are historically intertwined processes. The latter provides estimates of the properties of the subsurface, which can be used to aid structural interpretation alongside the original seismic data and a number of other seismic attributes. In this work, we redefine this process as an inverse problem which tries to jointly estimate subsurface properties (i.e., acoustic impedance) and a piece-wise segmented representation of the subsurface based on user-defined macro-classes. By inverting for the quantities simultaneously, the inversion is primed with prior knowledge about the regions of interest, whilst at the same time it constrains this belief with the actual seismic measurements. As the proposed functional is separable in the two quantities, these are optimized in an alternating fashion, where each subproblem is solved using the Primal-Dual algorithm. Subsequently, the final segmented model is used as input to an ad-hoc workflow that extracts the perimeter of the detected shapes and produces a structural framework (i.e., seismic horizons) consistent with the estimated subsurface properties. The effectiveness of the proposed method is illustrated through numerical examples on synthetic and field datasets.
Original languageEnglish (US)
JournalGeophysical Journal International
DOIs
StatePublished - Sep 23 2021

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Fingerprint

Dive into the research topics of 'A Joint inversion-segmentation approach to assisted seismic interpretation'. Together they form a unique fingerprint.

Cite this