TY - JOUR
T1 - A Kinetic Model for the Sedimentation of Rod--Like Particles
AU - Helzel, Christiane
AU - Tzavaras, Athanasios
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors express their thanks to Professor Felix Otto for his valuable comments and his involvement in several discussions concerning this work, and to Professor Jian-Guo Liu for helpful remarks.
PY - 2017/3/23
Y1 - 2017/3/23
N2 - We consider a coupled system consisting of a kinetic equation coupled to a macroscopic Stokes (or Navier-Stokes) equation and describing the motion of a suspension of rigid rods in gravity. A reciprocal coupling leads to the formation of clusters: The buoyancy force creates a macroscopic velocity gradient that causes the microscopic particles to align so that their sedimentation reinforces the formation of clusters of higher particle density. We provide a quantitative analysis of cluster formation. We derive a nonlinear moment closure model, which consists of evolution equations for the density and second order moments and that uses the structure of spherical harmonics to suggest a closure strategy. For a rectilinear flow we employ the moment closure together with a quasi-dynamic approximation to derive an effective equation. The effective equation is an advectiondiffusion equation with nonisotropic diffusion coupled to a Poisson equation, and belongs to the class of the so-called flux-limited Keller-Segel models. For shear flows, we provide an argument for the validity of the effective equation and perform numerical comparisons that indicate good agreement between the original system and the effective theory. For rectilinear flow we show numerical results which indicate that the quasi-dynamic provides accurate approximations. Finally, a linear stability analysis on the moment system shows that linear theory predicts a wavelength selection mechanism for the cluster width, provided that the Reynolds number is larger than zero.
AB - We consider a coupled system consisting of a kinetic equation coupled to a macroscopic Stokes (or Navier-Stokes) equation and describing the motion of a suspension of rigid rods in gravity. A reciprocal coupling leads to the formation of clusters: The buoyancy force creates a macroscopic velocity gradient that causes the microscopic particles to align so that their sedimentation reinforces the formation of clusters of higher particle density. We provide a quantitative analysis of cluster formation. We derive a nonlinear moment closure model, which consists of evolution equations for the density and second order moments and that uses the structure of spherical harmonics to suggest a closure strategy. For a rectilinear flow we employ the moment closure together with a quasi-dynamic approximation to derive an effective equation. The effective equation is an advectiondiffusion equation with nonisotropic diffusion coupled to a Poisson equation, and belongs to the class of the so-called flux-limited Keller-Segel models. For shear flows, we provide an argument for the validity of the effective equation and perform numerical comparisons that indicate good agreement between the original system and the effective theory. For rectilinear flow we show numerical results which indicate that the quasi-dynamic provides accurate approximations. Finally, a linear stability analysis on the moment system shows that linear theory predicts a wavelength selection mechanism for the cluster width, provided that the Reynolds number is larger than zero.
UR - http://hdl.handle.net/10754/583111
UR - http://epubs.siam.org/doi/10.1137/15M1023907
UR - http://www.scopus.com/inward/record.url?scp=85016941703&partnerID=8YFLogxK
U2 - 10.1137/15M1023907
DO - 10.1137/15M1023907
M3 - Article
SN - 1540-3459
VL - 15
SP - 500
EP - 536
JO - Multiscale Modeling & Simulation
JF - Multiscale Modeling & Simulation
IS - 1
ER -