TY - JOUR
T1 - A large-insert (130 kbp) bacterial artificial chromosome library of the rice blast fungus Magnaporthe grisea: Genome analysis, contig assembly, and gene cloning
AU - Zhu, Heng
AU - Choi, Sangdun
AU - Johnston, Andrea K.
AU - Wing, Rod A.
AU - Dean, Ralph A.
N1 - Generated from Scopus record by KAUST IRTS on 2019-11-20
PY - 1997/1/1
Y1 - 1997/1/1
N2 - Magnaporthe grisea (Hebert) Barr causes rice blast, one of the most devastating diseases of rice (Oryza sativa) worldwide. This fungus is an ideal organism for studying a number of aspects of plant pathogen interactions, including infection-related morphogenesis, avirulence, and pathogen evolution. To facilitate M. grisea genome analysis, physical mapping, and positional cloning, we have constructed a bacterial artificial chromosome (BAC) library from the rice infecting strain 70-15. A new method was developed for separation of partially digested large-molecular-weight DNA fragments that facilitated library construction with large inserts. The library contains 9216 clones, with an average insert size of 130 kbp (>25 genome equivalents) stored in 384-well microtiter plates that can be double spotted robotically on to a single nylon membrane. Several unlinked single-copy DNA probes were used to screen 4608 clones in the library and an average of 13 (minimum of 6) overlapping BAC clones was found in each case. Hybridization of total genomic DNA to the library and analysis of individual clones indicated that ~26% of the clones contain single-copy DNA. Approximately 35% of BAC clones contained the retrotransposon MAGGY. The library was used to identify BAC clones containing a adenylate cyclase gene (mac1). In addition, a 550-kbp contig composed of 6 BAC clones was constructed that encompassed two adjacent RFLP markers on chromosome 2. These data show that the BAC library is suitable for genome analysis of M. grisea. Copies of colony hybridization membranes are available upon request.
AB - Magnaporthe grisea (Hebert) Barr causes rice blast, one of the most devastating diseases of rice (Oryza sativa) worldwide. This fungus is an ideal organism for studying a number of aspects of plant pathogen interactions, including infection-related morphogenesis, avirulence, and pathogen evolution. To facilitate M. grisea genome analysis, physical mapping, and positional cloning, we have constructed a bacterial artificial chromosome (BAC) library from the rice infecting strain 70-15. A new method was developed for separation of partially digested large-molecular-weight DNA fragments that facilitated library construction with large inserts. The library contains 9216 clones, with an average insert size of 130 kbp (>25 genome equivalents) stored in 384-well microtiter plates that can be double spotted robotically on to a single nylon membrane. Several unlinked single-copy DNA probes were used to screen 4608 clones in the library and an average of 13 (minimum of 6) overlapping BAC clones was found in each case. Hybridization of total genomic DNA to the library and analysis of individual clones indicated that ~26% of the clones contain single-copy DNA. Approximately 35% of BAC clones contained the retrotransposon MAGGY. The library was used to identify BAC clones containing a adenylate cyclase gene (mac1). In addition, a 550-kbp contig composed of 6 BAC clones was constructed that encompassed two adjacent RFLP markers on chromosome 2. These data show that the BAC library is suitable for genome analysis of M. grisea. Copies of colony hybridization membranes are available upon request.
UR - https://linkinghub.elsevier.com/retrieve/pii/S1087184597909968
UR - http://www.scopus.com/inward/record.url?scp=0031170738&partnerID=8YFLogxK
U2 - 10.1006/fgbi.1997.0996
DO - 10.1006/fgbi.1997.0996
M3 - Article
SN - 1087-1845
VL - 21
JO - Fungal Genetics and Biology
JF - Fungal Genetics and Biology
IS - 3
ER -