TY - JOUR
T1 - A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature
AU - Tan, Yingbin
AU - Guo, Yanhui
AU - Li, Shaofeng
AU - Sun, Weiwei
AU - Zhu, Yihan
AU - Li, Qi
AU - Yu, Xuebin
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was partially supported by the Ministry of Science and Technology of China (2010CB631302), the National Natural Science Foundation of China (grant no. 51071047), the Program for New Century Excellent Talents in Universities (NCET-08-0135), the PhD Programs Foundation of Ministry of Education of China (20090071110053), and a Foundation for the Author of National Excellent Doctoral Dissertation of PR China (200746).
PY - 2011
Y1 - 2011
N2 - A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system showed significantly improved dehydrogenation properties compared to the neat AB and LiBH 4·NH3 alone. For example, in the case of the LiBH4·NH3/AB with a mole ratio of 1:3, over 8 wt.% hydrogen could be released at 90 °C within 4 h, while only 5 wt.% hydrogen released from the neat AB at the same conditions. Through a series of experiments it has been demonstrated that the hydrogen release of the new system is resulted from an interaction of AB and the NH3 group in the LiBH4·NH3, in which LiBH4 works as a carrier of ammonia and plays a crucial role in promoting the interaction between the NH3 group and AB. The enhanced dehydrogenation of LiBH 4·NH3/AB may result from the polar liquid state reaction environments and the initially promoted formation of the diammoniate of diborane, which will facilitate the B-H⋯H-N interaction between LiBH4·NH3 and AB. Kinetics analysis revealed that the rate-controlling steps of the dehydrogenation process are three-dimensional diffusion of hydrogen at temperatures ranging from 90 to 110 °C. This journal is © The Royal Society of Chemistry.
AB - A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system showed significantly improved dehydrogenation properties compared to the neat AB and LiBH 4·NH3 alone. For example, in the case of the LiBH4·NH3/AB with a mole ratio of 1:3, over 8 wt.% hydrogen could be released at 90 °C within 4 h, while only 5 wt.% hydrogen released from the neat AB at the same conditions. Through a series of experiments it has been demonstrated that the hydrogen release of the new system is resulted from an interaction of AB and the NH3 group in the LiBH4·NH3, in which LiBH4 works as a carrier of ammonia and plays a crucial role in promoting the interaction between the NH3 group and AB. The enhanced dehydrogenation of LiBH 4·NH3/AB may result from the polar liquid state reaction environments and the initially promoted formation of the diammoniate of diborane, which will facilitate the B-H⋯H-N interaction between LiBH4·NH3 and AB. Kinetics analysis revealed that the rate-controlling steps of the dehydrogenation process are three-dimensional diffusion of hydrogen at temperatures ranging from 90 to 110 °C. This journal is © The Royal Society of Chemistry.
UR - http://hdl.handle.net/10754/561668
UR - http://xlink.rsc.org/?DOI=c1jm11158b
UR - http://www.scopus.com/inward/record.url?scp=81855205180&partnerID=8YFLogxK
U2 - 10.1039/c1jm11158b
DO - 10.1039/c1jm11158b
M3 - Article
SN - 0959-9428
VL - 21
SP - 14509
JO - Journal of Materials Chemistry
JF - Journal of Materials Chemistry
IS - 38
ER -