A matrix splitting method for composite function minimization

Ganzhao Yuan, Wei Shi Zheng, Bernard Ghanem

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.

Original languageEnglish (US)
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5310-5319
Number of pages10
ISBN (Electronic)9781538604571
DOIs
StatePublished - Nov 6 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: Jul 21 2017Jul 26 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Conference

Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period07/21/1707/26/17

ASJC Scopus subject areas

  • Signal Processing
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'A matrix splitting method for composite function minimization'. Together they form a unique fingerprint.

Cite this