Skip to main navigation
Skip to search
Skip to main content
KAUST FACULTY PORTAL Home
Home
Profiles
Research units
Research output
Press/Media
Prizes
Courses
Equipment
Student theses
Datasets
Search by expertise, name or affiliation
A method for approximate fully Bayesian analysis of parameters
Anne Randi Syversveen
*
,
Haavard Rue
*
Corresponding author for this work
Computer, Electrical and Mathematical Sciences and Engineering
Research output
:
Contribution to journal
›
Article
›
peer-review
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'A method for approximate fully Bayesian analysis of parameters'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Earth and Planetary Sciences
Bayesian Analysis
100%
Datum
100%
Parameter
100%
Model
75%
Cost
50%
Simulation
50%
Reservoir
50%
Reservoir Characterization
25%
Markov Chain Monte Carlo
25%
Parameter Estimation
25%
Petroleum Reservoir
25%
Stochastic Modeling
25%
Approach
25%
Standard
25%
Knowledge
25%
Observation
25%
Amount
25%
Drilling
25%
Tool
25%
Geology
25%
INIS
data
100%
approximations
100%
simulation
75%
stochastic processes
50%
cost
50%
monte carlo method
25%
petroleum
25%
modeling
25%
tools
25%
chains
25%
markov process
25%
drilling
25%
geology
25%
Mathematics
Bayesian Analysis
100%
Approximates
100%
Parameters
100%
Monte Carlo Simulation
25%
Computational Cost
25%
Stochastic Model
25%
Parameter Estimation
25%
Real Data
25%
Simulated Data
25%
Point Model
25%
Flow
25%
Modeling
25%