A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media

Amgad Salama, Shuyu Sun, M. F. El-Amin

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.
Original languageEnglish (US)
JournalJournal of Heat Transfer
Volume135
Issue number4
DOIs
StatePublished - Mar 20 2013

ASJC Scopus subject areas

  • Mechanical Engineering
  • Physical and Theoretical Chemistry
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media'. Together they form a unique fingerprint.

Cite this