A multivariate time series approach to forecasting daily attendances at hospital emergency department

Farid Kadri, Fouzi Harrou, Ying Sun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Efficient management of patient demands in emergency departments (EDs) has recently received increasing attention by most healthcare administrations. Forecasting ED demands greatly helps ED's managers to make suitable decisions by optimally allocating the available limited resources to efficiently handle patient attendances. Furthermore, it permits pre-emptive action(s) to mitigate and/or prevent overcrowding situations and to enhance the quality of care. In this work, we present a statistical approach based on a vector autoregressive moving average (VARMA) model for a short term forecasting of daily attendances at an ED. The VARMA model has been validated using an experimental data from the paediatric emergency department (PED) at Lille regional hospital centre, France. The results obtained indicate the effectiveness of the proposed approach in forecasting patient demands.

Original languageEnglish (US)
Title of host publication2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-6
Number of pages6
ISBN (Electronic)9781538627259
DOIs
StatePublished - Jul 1 2017
Event2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Honolulu, United States
Duration: Nov 27 2017Dec 1 2017

Publication series

Name2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings
Volume2018-January

Conference

Conference2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017
Country/TerritoryUnited States
CityHonolulu
Period11/27/1712/1/17

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Control and Optimization

Fingerprint

Dive into the research topics of 'A multivariate time series approach to forecasting daily attendances at hospital emergency department'. Together they form a unique fingerprint.

Cite this