A new approach for the simulation of fluid flow in unconventional reservoirs through multiple permeability modeling

Bicheng Yan, Masoud Alfi, Yuhe Wang, John E. Killough

Research output: Chapter in Book/Report/Conference proceedingConference contribution

55 Scopus citations

Abstract

Shale reservoirs are characterized by ultra-low permeability, multiple porosity types, and complex fluid storage and flow mechanisms. Consequentially the feasibility of performing simulations using conventional Dual Porosity Models based on Darcy flow has been frequently challenged. Additionally, tracking of water in shale continues to be controversial and mysterious. In organic-rich shale, kerogen is generally dispersed in the inorganic matter. Kerogen is different from any other shale constituents because it tends to be hydrocarbon-wet, abundant in nanopores, fairly porous and capable of adsorbing gas. However, the inorganic matter is usually water wet with low porosity such that capillary pressure becomes the dominant driving mechanism for water flow, especially during hydraulic fracturing operations. This work presents a technique of subdividing shale matrices and capturing different mechanisms including Darcy flow, gas diffusion and desorption, and capillary pressure. The extension of this technique forms a solid and comprehensive basis for a specially-designed simulator for fractured shale reservoirs at the micro-scale. Through the use of this unique simulator, this paper presents a micro-scale two-phase flow model which covers three continua (organic matter, inorganic matter and natural fractures) and considers the complex dynamics in shale. In the model, TOC is an indispensable parameter to characterize the kerogen in the shale. A unique tool for general multiple porosity systems is used so that several porosity systems can be tied to each other through arbitrary connections. The new model allows us to better understand the complex flow mechanisms and to observe the water transfer behavior between shale matrices and fractures under a microscopic view. Sensitivity analysis studies on the contributions of different flow mechanisms, kerogen properties, water saturation and capillary pressure are also presented. Copyright 2013, Society of Petroleum Engineers.
Original languageEnglish (US)
Title of host publicationProceedings - SPE Annual Technical Conference and Exhibition
PublisherSociety of Petroleum Engineers (SPE)
Pages1240-1256
Number of pages17
ISBN (Print)9781629931876
DOIs
StatePublished - Jan 1 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'A new approach for the simulation of fluid flow in unconventional reservoirs through multiple permeability modeling'. Together they form a unique fingerprint.

Cite this