A new avenue for Bayesian inference with INLA

Janet Van Niekerk, Elias Teixeira Krainski, Denis Rustand, Haavard Rue

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Integrated Nested Laplace Approximations (INLA) has been a successful approximate Bayesian inference framework since its proposal by Rue et al. (2009). The increased computational efficiency and accuracy when compared with sampling-based methods for Bayesian inference like MCMC methods, are some contributors to its success. Ongoing research in the INLA methodology and implementation thereof in the R package R-INLA, ensures continued relevance for practitioners and improved performance and applicability of INLA. The era of big data and some recent research developments, presents an opportunity to reformulate some aspects of the classic INLA formulation, to achieve even faster inference, improved numerical stability and scalability. The improvement is especially noticeable for data-rich models. Various examples of data-rich models, like Cox's proportional hazards model, an item-response theory model, a spatial model including prediction, and a three-dimensional model for fMRI data are used to illustrate the efficiency gains in a tangible manner.
Original languageEnglish (US)
Pages (from-to)107692
JournalComputational Statistics and Data Analysis
Volume181
DOIs
StatePublished - Jan 27 2023

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computational Mathematics
  • Applied Mathematics
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'A new avenue for Bayesian inference with INLA'. Together they form a unique fingerprint.

Cite this