A New Method to Improve the Electrical Properties of KNN-based Ceramics: Tailoring Phase Fraction

Xiang Lv, Jiagang Wu, Jianguo Zhu, Dingquan Xiao, Xixiang Zhang

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

Although both the phase type and fraction of multi-phase coexistence can affect the electrical properties of (K,Na)NbO3 (KNN)-based ceramics, effects of phase fraction on their electrical properties were few concerned. In this work, through changing the calcination temperature of CaZrO3 powders, we successfully developed the 0.96K0.5Na0.5Nb0.96Sb0.04O3-0.01CaZrO3-0.03Bi0.5Na0.5HfO3 ceramics containing a wide rhombohedral-tetragonal (R-T) phase coexistence with the variations of T (or R) phase fractions. It was found that higher T phase fraction can warrant a larger piezoelectric constant (d33) and d33 also showed a linear variation with respect to tetragonality ratio (c/a). More importantly, a number of domain patterns were observed due to high T phase fraction and large c/a ratio, greatly benefiting the piezoelectricity. In addition, the improved ferroelectric fatigue behavior and thermal stability were also shown in the ceramics containing high T phase fraction. Therefore, this work can bring a new viewpoint into the physical mechanism of KNN-based ceramics behind R-T phase coexistence.
Original languageEnglish (US)
Pages (from-to)85-94
Number of pages10
JournalJournal of the European Ceramic Society
Volume38
Issue number1
DOIs
StatePublished - Aug 18 2017

Fingerprint

Dive into the research topics of 'A New Method to Improve the Electrical Properties of KNN-based Ceramics: Tailoring Phase Fraction'. Together they form a unique fingerprint.

Cite this