TY - JOUR
T1 - A new physics-preserving IMPES scheme for incompressible and immiscible two-phase flow in heterogeneous porous media
AU - Chen, Huangxin
AU - Sun, Shuyu
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): BAS/1/1351-01-01
Acknowledgements: The work of Huangxin Chen was supported by the NSF of China (Grant No. 11771363) and the Fundamental Research Funds for the Central Universities (Grant No. 20720180003). Huangxin Chen acknowledges the support of the Physical Science and Engineering Division at the King Abdullah University of Science and Technology during his visit. The work of Shuyu Sun was supported by King Abdullah University of Science and Technology (KAUST) through the grant BAS/1/1351-01-01.
PY - 2020/6/6
Y1 - 2020/6/6
N2 - In this work we consider a new efficient IMplicit Pressure Explicit Saturation (IMPES) scheme for the simulation of incompressible and immiscible two-phase flow in heterogeneous porous media with capillary pressure. Compared with the conventional IMPES schemes, the new IMPES scheme is inherently physics-preserving, namely, the new algorithm is locally mass conservative for both phases and it also enjoys another appealing feature that the total velocity is continuous in the normal direction. Moreover, the new scheme is unbiased with regard to the two phases and the saturations of both phases are bounds-preserving if the time step size is smaller than a certain value. The key ideas in the new scheme include that the Darcy flows for both phases are rewritten in the formulation based on the total velocity and an auxiliary velocity referring to as the capillary potential gradient, and the total discretized conservation equation is obtained by the summation of the discretized conservation equation for each phase. The upwind strategy is applied to update the saturations explicitly, and the upwind mixed finite element methods are used to solve the pressure-velocity systems which can be decoupled. We also present some interesting examples to demonstrate the efficiency and robustness of the new algorithm.
AB - In this work we consider a new efficient IMplicit Pressure Explicit Saturation (IMPES) scheme for the simulation of incompressible and immiscible two-phase flow in heterogeneous porous media with capillary pressure. Compared with the conventional IMPES schemes, the new IMPES scheme is inherently physics-preserving, namely, the new algorithm is locally mass conservative for both phases and it also enjoys another appealing feature that the total velocity is continuous in the normal direction. Moreover, the new scheme is unbiased with regard to the two phases and the saturations of both phases are bounds-preserving if the time step size is smaller than a certain value. The key ideas in the new scheme include that the Darcy flows for both phases are rewritten in the formulation based on the total velocity and an auxiliary velocity referring to as the capillary potential gradient, and the total discretized conservation equation is obtained by the summation of the discretized conservation equation for each phase. The upwind strategy is applied to update the saturations explicitly, and the upwind mixed finite element methods are used to solve the pressure-velocity systems which can be decoupled. We also present some interesting examples to demonstrate the efficiency and robustness of the new algorithm.
UR - http://hdl.handle.net/10754/661039
UR - https://linkinghub.elsevier.com/retrieve/pii/S0377042720303265
UR - http://www.scopus.com/inward/record.url?scp=85086357918&partnerID=8YFLogxK
U2 - 10.1016/j.cam.2020.113035
DO - 10.1016/j.cam.2020.113035
M3 - Article
SN - 0377-0427
VL - 381
SP - 113035
JO - Journal of Computational and Applied Mathematics
JF - Journal of Computational and Applied Mathematics
ER -