TY - JOUR
T1 - A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide
AU - He, Linwei
AU - Chen, Long
AU - Dong, Xinglong
AU - Zhang, Shitong
AU - Zhang, Mingxing
AU - Dai, Xing
AU - Liu, Xiajie
AU - Lin, Peng
AU - Li, Kunfeng
AU - Chen, Cailing
AU - Pan, Tingting
AU - Ma, Fuyin
AU - Chen, Junchang
AU - Yuan, Mengjia
AU - Zhang, Yugang
AU - Chen, Lei
AU - Zhou, Ruhong
AU - Han, Yu
AU - Chai, Zhifang
AU - Wang, Shuao
N1 - KAUST Repository Item: Exported on 2021-01-18
Acknowledgements: This work was supported by grants from the National Natural Science Foundation of China (21825601, 21790374, 21806117, and 21906116) and the National Key R&D Program of China (2018YFB1900203). We thank Prof. Gang Zhou (Hubei University of Technology) as well as Prof. Wei Liu and Prof. Litao Kang (Yantai University) for their support in DFT calculations and Raman measurements, respectively. S.W. conceived and supervised the project; L.H. L.C. and M.Z. performed the synthesis and characterization of the COF material; L.H. X.D. X.L. P.L. and X.L. designed and carried out the static and dynamic adsorption experiments; S.Z. and X.D. performed the computational studies; L.H. F.M. J.C. L.C. and M.Y. carried out the BET analyses and XPS spectra analyses; Y.Z. and C.C. performed the electron microscopy test; T.P. performed the regeneration experiments; S.W. L.H. L.C. Y.H. and X.D. prepared the manuscript. All authors discussed the paper. The authors declare no competing interests.
PY - 2020/12
Y1 - 2020/12
N2 - The capture of radioiodine species during nuclear fuel reprocessing and nuclear accidents is crucial for nuclear safety, environmental protection, and public health. Previously reported emerging materials for iodine uptake cannot outperform commercial zeolites and active carbon under the practical dynamic scenario. Herein, we present a new design philosophy aiming at significantly enhanced specific host-guest interactions and obtain a nitrogen-rich covalent organic framework material by introducing a bipyridine group into the building block for the simultaneous capture of both iodine gas through enhanced electron-pair effect and organic iodide via the methylation reaction. These efforts give rise to not only an ultrahigh uptake capacity of 6.0 g g−1 for iodine gas and a record-high value of 1.45 g g−1 for methyl iodide under static sorption conditions but also, more importantly, a record-high iodine loading capability under dynamic conditions demonstrated from the breakthrough experiments.
AB - The capture of radioiodine species during nuclear fuel reprocessing and nuclear accidents is crucial for nuclear safety, environmental protection, and public health. Previously reported emerging materials for iodine uptake cannot outperform commercial zeolites and active carbon under the practical dynamic scenario. Herein, we present a new design philosophy aiming at significantly enhanced specific host-guest interactions and obtain a nitrogen-rich covalent organic framework material by introducing a bipyridine group into the building block for the simultaneous capture of both iodine gas through enhanced electron-pair effect and organic iodide via the methylation reaction. These efforts give rise to not only an ultrahigh uptake capacity of 6.0 g g−1 for iodine gas and a record-high value of 1.45 g g−1 for methyl iodide under static sorption conditions but also, more importantly, a record-high iodine loading capability under dynamic conditions demonstrated from the breakthrough experiments.
UR - http://hdl.handle.net/10754/666911
UR - https://linkinghub.elsevier.com/retrieve/pii/S2451929420306318
UR - http://www.scopus.com/inward/record.url?scp=85099158793&partnerID=8YFLogxK
U2 - 10.1016/j.chempr.2020.11.024
DO - 10.1016/j.chempr.2020.11.024
M3 - Article
SN - 2451-9294
JO - Chem
JF - Chem
ER -