TY - GEN
T1 - A nonparametric Bayesian model for kernel matrix completion
AU - Paisley, John
AU - Carin, Lawrence
N1 - Generated from Scopus record by KAUST IRTS on 2021-02-09
PY - 2010/11/8
Y1 - 2010/11/8
N2 - We present a nonparametric Bayesian model for completing low-rank, positive semidefinite matrices. Given an N x N matrix with underlying rank r, and noisy measured values and missing values with a symmetric pattern, the proposed Bayesian hierarchical model nonparametrically uncovers the underlying rank from all positive semidefinite matrices, and completes the matrix by approximating the missing values. We analytically derive all posterior distributions for the fully conjugate model hierarchy and discuss variational Bayes and MCMC Gibbs sampling for inference, as well as an efficient measurement selection procedure. We present results on a toy problem, and a music recommendation problem, where we complete the kernel matrix of 2,250 pieces of music. ©2010 IEEE.
AB - We present a nonparametric Bayesian model for completing low-rank, positive semidefinite matrices. Given an N x N matrix with underlying rank r, and noisy measured values and missing values with a symmetric pattern, the proposed Bayesian hierarchical model nonparametrically uncovers the underlying rank from all positive semidefinite matrices, and completes the matrix by approximating the missing values. We analytically derive all posterior distributions for the fully conjugate model hierarchy and discuss variational Bayes and MCMC Gibbs sampling for inference, as well as an efficient measurement selection procedure. We present results on a toy problem, and a music recommendation problem, where we complete the kernel matrix of 2,250 pieces of music. ©2010 IEEE.
UR - http://ieeexplore.ieee.org/document/5495105/
UR - http://www.scopus.com/inward/record.url?scp=78049356796&partnerID=8YFLogxK
U2 - 10.1109/ICASSP.2010.5495105
DO - 10.1109/ICASSP.2010.5495105
M3 - Conference contribution
SN - 9781424442966
SP - 2090
EP - 2093
BT - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ER -