TY - JOUR
T1 - A Novel Anion Doping for Stable CsPbI2Br Perovskite Solar Cells with an Efficiency of 15.56% and an Open Circuit Voltage of 1.30 V
AU - Zhao, Huan
AU - Han, Yu
AU - Xu, Zhuo
AU - Duan, Chenyang
AU - Yang, Shaomin
AU - Yuan, Shihao
AU - Yang, Zhou
AU - Liu, Zhike
AU - Liu, Shengzhong
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-21
PY - 2019/10/1
Y1 - 2019/10/1
N2 - The Cs-based inorganic perovskite solar cells (PSCs), such as CsPbI2Br, have made a striking breakthrough with power conversion efficiency (PCE) over 16% and potential to be used as top cells for tandem devices. Herein, I− is partially replaced with the acetate anion (Ac−) in the CsPbI2Br framework, producing multiple benefits. The Ac− doping can change the morphology, electronic properties, and band structure of the host CsPbI2Br film. The obtained CsPbI2−x Br(Ac)x perovskite films present lower trap densities, longer carrier lifetimes, and fast charge transportation compared to the host CsPbI2Br films. Interestingly, the CsPbI2−x Br(Ac)x PSCs exhibit a maximum PCE of 15.56% and an ultrahigh open circuit voltage (Voc) of 1.30 V without sacrificing photocurrent. Notably, such a remarkable Voc is among the highest values of the previously reported CsPbI2Br PSCs, while the PCE far exceeds all of them. In addition, the obtained CsPbI2−x Br(Ac)x PSCs exhibit high reproducibility and good stability. The stable CsPbI2−x Br(Ac)x PSCs with high Voc and PCE are desirable for tandem solar cell applications.
AB - The Cs-based inorganic perovskite solar cells (PSCs), such as CsPbI2Br, have made a striking breakthrough with power conversion efficiency (PCE) over 16% and potential to be used as top cells for tandem devices. Herein, I− is partially replaced with the acetate anion (Ac−) in the CsPbI2Br framework, producing multiple benefits. The Ac− doping can change the morphology, electronic properties, and band structure of the host CsPbI2Br film. The obtained CsPbI2−x Br(Ac)x perovskite films present lower trap densities, longer carrier lifetimes, and fast charge transportation compared to the host CsPbI2Br films. Interestingly, the CsPbI2−x Br(Ac)x PSCs exhibit a maximum PCE of 15.56% and an ultrahigh open circuit voltage (Voc) of 1.30 V without sacrificing photocurrent. Notably, such a remarkable Voc is among the highest values of the previously reported CsPbI2Br PSCs, while the PCE far exceeds all of them. In addition, the obtained CsPbI2−x Br(Ac)x PSCs exhibit high reproducibility and good stability. The stable CsPbI2−x Br(Ac)x PSCs with high Voc and PCE are desirable for tandem solar cell applications.
UR - https://onlinelibrary.wiley.com/doi/10.1002/aenm.201902279
UR - http://www.scopus.com/inward/record.url?scp=85074027688&partnerID=8YFLogxK
U2 - 10.1002/aenm.201902279
DO - 10.1002/aenm.201902279
M3 - Article
SN - 1614-6840
VL - 9
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 40
ER -