TY - GEN
T1 - A novel approach to reduce breakdown pressure of unconventional rocks using cyclic injection scheme
AU - Al-Nakhli, Ayman
AU - Tariq, Zeeshan
AU - Mahmoud, Mohamed
AU - Abdulraheem, Abdulazeez
AU - Al-Shehri, Dhafer
AU - Murtaza, Mobeen
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-20
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Recent rise in global warming and fluctuations in world economy needs the best engineering designs to extract hydrocarbons from unconventional resources. Unconventional resources mostly found in over-pressured and deep formations, where the host rock has very high strength and integrity. Fracturing techniques becomes very challenging when implemented in these types of rocks, and in many cases approached to the maximum operational limits without generating any fracture. This leaves a small operational window to initiate and place the hydraulic fractures. Current stimulation methods to fracture these formations involve with adverse environmental effects and high costs due to the entailment of water mixed with huge volumes of chemicals such as biocides, scale inhibitors, polymers, friction reducers, rheology modifiers, corrosion inhibitors, and many more. In this study, a novel environmentally friendly approach to reduce the breakdown pressure of the unconventional rock is presented. The new approach makes it possible to fracture the high strength rocks more economically and in more environmentally friendly way. The new method incorporates the injection of chemical free fracturing fluid in a series of cycles with a progressive increase of pressure in every cycle. This will allow stress relaxation at the fracture tip and correspondingly enough time for fracturing fluid to infiltrate deep inside the rock sample and weaken the rock matrix. As a result of which the tensile strength-ultimately the breakdown pressure of the rock gets reduced. The present study is carried out on different cement blocks. The post treatment experimental analysis confirmed the success of cyclic fracturing treatment. The results of this study showed that the newly formulated method of cyclic injection can reduce the breakdown pressure by up to 24% of the original value. This reduction in breakdown pressure helped to overcome the operational limits in the field and makes the fracturing operation greener.
AB - Recent rise in global warming and fluctuations in world economy needs the best engineering designs to extract hydrocarbons from unconventional resources. Unconventional resources mostly found in over-pressured and deep formations, where the host rock has very high strength and integrity. Fracturing techniques becomes very challenging when implemented in these types of rocks, and in many cases approached to the maximum operational limits without generating any fracture. This leaves a small operational window to initiate and place the hydraulic fractures. Current stimulation methods to fracture these formations involve with adverse environmental effects and high costs due to the entailment of water mixed with huge volumes of chemicals such as biocides, scale inhibitors, polymers, friction reducers, rheology modifiers, corrosion inhibitors, and many more. In this study, a novel environmentally friendly approach to reduce the breakdown pressure of the unconventional rock is presented. The new approach makes it possible to fracture the high strength rocks more economically and in more environmentally friendly way. The new method incorporates the injection of chemical free fracturing fluid in a series of cycles with a progressive increase of pressure in every cycle. This will allow stress relaxation at the fracture tip and correspondingly enough time for fracturing fluid to infiltrate deep inside the rock sample and weaken the rock matrix. As a result of which the tensile strength-ultimately the breakdown pressure of the rock gets reduced. The present study is carried out on different cement blocks. The post treatment experimental analysis confirmed the success of cyclic fracturing treatment. The results of this study showed that the newly formulated method of cyclic injection can reduce the breakdown pressure by up to 24% of the original value. This reduction in breakdown pressure helped to overcome the operational limits in the field and makes the fracturing operation greener.
UR - https://onepetro.org/SPEADIP/proceedings/19ADIP/1-19ADIP/Abu%20Dhabi,%20UAE/216390
UR - http://www.scopus.com/inward/record.url?scp=85088407068&partnerID=8YFLogxK
U2 - 10.2118/197595-ms
DO - 10.2118/197595-ms
M3 - Conference contribution
SN - 9781613996720
BT - Society of Petroleum Engineers - Abu Dhabi International Petroleum Exhibition and Conference 2019, ADIP 2019
PB - Society of Petroleum Engineers
ER -