A novel probe-to-probe method for measuring thermal conductivity of individual electrospun nanofibers

Nicholas Bonatt, John Carlin, Fangqi Chen, Yanpei Tian, Yi Zheng

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Polymer nanofibers have the ability to replace expensive materials, such as metals, ceramics and composites, in specific areas, such as heat exchangers, energy storage and biomedical applications. These properties have caused polymer nanofibers to be explored as solutions to a growing list of thermal management problems, driving an even greater need to better measure and understand the thermal properties of these nanofibers. This study intends to further the understanding of the thermal properties of polymer nanofibers through the use of a novel Probe-to-Probe measurement method. Polycaprolactone nanofibers fabricated using the electrospinning method can be easily collected and loaded into a traditional atomic force microscope through a mechanical design for thermal measurement. This Probe-to-Probe method demonstrates the ability to accurately measure the thermal boundary conditions about a polymer nanofiber with a heating prong temperature up to 400◦C and assists in characterizing its thermal properties.
Original languageEnglish (US)
Pages (from-to)1-8
Number of pages8
JournalMATERIALS
Volume13
Issue number22
DOIs
StatePublished - Nov 2 2020
Externally publishedYes

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'A novel probe-to-probe method for measuring thermal conductivity of individual electrospun nanofibers'. Together they form a unique fingerprint.

Cite this