Abstract
Iron oxide nanocrystals are of great scientific and technological interest. In this work, these materials are the starting point for producing a reactive nanoparticle whose surface resembles that of natural green rusts. Treatment of iron oxide nanoparticles with cysteamine leads to the reduction of iron and the formation of a brilliant green aqueous solution of nanocrystals rich in iron(II). These materials remained crystalline with magnetic and structural features of the original iron oxide. However, new low-angle X-ray diffraction peaks as well as vibrational features characteristic of cysteamine were found in the nanocrystalline product. X-ray absorption spectroscopy (XAS), X-ray photoemission (XPS) and Mössbauer spectroscopies indicated the presence of an iron(II)-rich phase with high sulfur content analogous to the iron-oxygen structures found in natural green rusts. Electron microscopy found that these structural components remained associated with the nonreduced iron oxide cores. These sulfur-rich analogs of natural green rusts are highly reactive and were able to rapidly degrade a model organic dye in water. This observation suggests possible actuation with a cysteamine treatment of inert and magnetic iron oxide particles at the point-of-use for environmental remediation.
Original language | English (US) |
---|---|
Pages (from-to) | 700-707 |
Number of pages | 8 |
Journal | Chemistry of Materials |
Volume | 27 |
Issue number | 3 |
DOIs | |
State | Published - Feb 10 2015 |
Externally published | Yes |
ASJC Scopus subject areas
- Materials Chemistry
- General Chemical Engineering
- General Chemistry