TY - GEN
T1 - A Numerical Method to Compute Stability Margins of Switching Linear Systems
AU - Klett, Corbin
AU - Abate, Matthew
AU - Coogan, Samuel
AU - Feron, Eric
N1 - KAUST Repository Item: Exported on 2021-12-14
Acknowledgements: This work was supported by the KAUST baseline budget.
PY - 2021/5/25
Y1 - 2021/5/25
N2 - Stability margins for linear time-varying (LTV) and switched-linear systems are traditionally computed via quadratic Lyapunov functions, and these functions certify the stability of the system under study. In this work, we show how the more general class of homogeneous polynomial Lyapunov functions is used to compute stability margins with reduced conservatism, and we show how these Lyapunov functions aid in the search for periodic trajectories for marginally stable LTV systems. Our work is premised on the recent observation that the search for a homogeneous polynomial Lyapunov function for some LTV systems is easily encoded as the search for a quadratic Lyapunov function for a related LTV system, and our main contribution is an intuitive algorithm for generating upper and lower bounds on the system's stability margin. We show also how the worst-case switching scheme-which draws an LTV system closest to a periodic orbit-is generated. Three numerical examples are provided to aid the reader and demonstrate the contributions of the work.
AB - Stability margins for linear time-varying (LTV) and switched-linear systems are traditionally computed via quadratic Lyapunov functions, and these functions certify the stability of the system under study. In this work, we show how the more general class of homogeneous polynomial Lyapunov functions is used to compute stability margins with reduced conservatism, and we show how these Lyapunov functions aid in the search for periodic trajectories for marginally stable LTV systems. Our work is premised on the recent observation that the search for a homogeneous polynomial Lyapunov function for some LTV systems is easily encoded as the search for a quadratic Lyapunov function for a related LTV system, and our main contribution is an intuitive algorithm for generating upper and lower bounds on the system's stability margin. We show also how the worst-case switching scheme-which draws an LTV system closest to a periodic orbit-is generated. Three numerical examples are provided to aid the reader and demonstrate the contributions of the work.
UR - http://hdl.handle.net/10754/670417
UR - https://ieeexplore.ieee.org/document/9483141/
UR - http://www.scopus.com/inward/record.url?scp=85111918427&partnerID=8YFLogxK
U2 - 10.23919/acc50511.2021.9483141
DO - 10.23919/acc50511.2021.9483141
M3 - Conference contribution
SN - 9781665441971
SP - 864
EP - 869
BT - 2021 American Control Conference (ACC)
PB - IEEE
ER -