A numerical study of Si-TMD contact with n/p type operation and interface barrier reduction for sub-5 nm monolayer MoS2 FET

Ying Tsan Tang, Kai Shin Li, Lain Jong Li, Ming Yang Li, Chang Hsien Lin, Yi Ju Chen, Chun Chi Chen, Chuan Jung Su, Bo Wei Wu, Cheng San Wu, Min Cheng Chen, Jia Min Shieh, Wen Kuan Yeh, Po Cheng Su, Tahui Wang, Fu Liang Yang, Chenming Hu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

An atomic-scale numerical study of Si contact with transition metal dichalcogenides (TMD) semiconductor materials is proposed by first-principles simulation for the first time. The monolayer MoS2 channel can be operated as both of n- and p-type FET by properly doping Si S/D to adjust the TMD channel potential. The gradient MoSx junction of dichalcogenide vacancies enables Si-MoS2 contact resistance lower than 100Ω-μm for interface Schottky barrier height reduction. The compact Si-MoS2 interface study can potentially provide monolayer TMD contact design guideline for the sub-5 nm TMD FET fabrication technology.

Original languageEnglish (US)
Title of host publication2016 IEEE International Electron Devices Meeting, IEDM 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages14.3.1-14.3.4
ISBN (Electronic)9781509039012
DOIs
StatePublished - Jan 31 2017
Event62nd IEEE International Electron Devices Meeting, IEDM 2016 - San Francisco, United States
Duration: Dec 3 2016Dec 7 2016

Publication series

NameTechnical Digest - International Electron Devices Meeting, IEDM
ISSN (Print)0163-1918

Conference

Conference62nd IEEE International Electron Devices Meeting, IEDM 2016
Country/TerritoryUnited States
CitySan Francisco
Period12/3/1612/7/16

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Materials Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A numerical study of Si-TMD contact with n/p type operation and interface barrier reduction for sub-5 nm monolayer MoS2 FET'. Together they form a unique fingerprint.

Cite this