A numerical study of three-dimensional droplets spreading on chemically patterned surfaces

Hua Zhong, Xiao-Ping Wang, Shuyu Sun

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We study numerically the three-dimensional droplets spreading on physically flat chemically patterned surfaces with periodic squares separated by channels. Our model consists of the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier boundary conditions. Stick-slip behavior and con-tact angle hysteresis are observed. Moreover, we also study the relationship between the effective advancing/receding angle and the two intrinsic angles of the surface patterns. By increasing the volume of droplet gradually, we find that the advancing contact line tends gradually to an equiangular octagon with the length ratio of the two adjacent sides equal to a fixed value that depends on the geometry of the pattern.
Original languageEnglish (US)
Pages (from-to)2905-2926
Number of pages22
JournalDiscrete and Continuous Dynamical Systems - Series B
Volume21
Issue number8
DOIs
StatePublished - Sep 26 2016

Fingerprint

Dive into the research topics of 'A numerical study of three-dimensional droplets spreading on chemically patterned surfaces'. Together they form a unique fingerprint.

Cite this