Abstract
The mechanisms mediating Na+ transport in higher plant roots were investigated by applying the patch clamp technique to protoplasts isolated from the cortex and stele of maize roots. In the cortex, permeation of Na+ through a time-dependent K+-selective inward rectifier was negligible. Instead, Na+ influx into maize roots probably occurs via an instantaneously-activating current. This current was partially inhibited by extracellular Ca2+, but was insensitive to extracellular TEA+, Cs+ and TTX. In outside-out patches, a plasma membrane ion channel was found which mediated an inward Na+ current which, at least in part, underlies the whole-cell instantaneously-activating current. The unitary conductance of this channel was 15 pS in 102:121 mM Na+ (outside:cytosol). Channel gating was voltage-independent and distinct from that observed for the inwardly rectifying K+-selective channel in the same cell type. Increasing extracellular Ca2+ from 0.1 to 1 mM reduced the open probability and unitary conductance of this channel. In 102 mM Na+: 123 mM K+ (outside:cytosol) a P(Na):P(K) of 2.1 was calculated. It is suggested that the plasma membrane Na+-permeable channel identified in the cortex of maize roots represents a pathway for low affinity Na+ uptake by intact maize roots. In the stele, permeation of Na+ through outwardly rectifying K+ channels was found to be negligible and the channels are thus unlikely to be involved in the transport of Na+ from the root symplasm.
Original language | English (US) |
---|---|
Pages (from-to) | 431-440 |
Number of pages | 10 |
Journal | Journal of experimental botany |
Volume | 48 |
Issue number | SPEC. ISS. |
DOIs | |
State | Published - Mar 1997 |
Externally published | Yes |
Keywords
- Maize root protoplasts
- Na-permeable channel
ASJC Scopus subject areas
- Physiology
- Plant Science