A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface

Luca Artiglia, Jacinta Edebeli, Fabrizio Orlando, Shuzhen Chen, Ming Tao Lee, Pablo Corral Arroyo, Anina Gilgen, Thorsten Bartels-Rausch, Armin Kleibert, Mario Vazdar, Marcelo Andres Carignano, Joseph S. Francisco, Paul B. Shepson, Ivan Gladich, Markus Ammann

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

Oxidation of bromide in aqueous environments initiates the formation of molecular halogen compounds, which is important for the global tropospheric ozone budget. In the aqueous bulk, oxidation of bromide by ozone involves a [Br•OOO-] complex as intermediate. Here we report liquid jet X-ray photoelectron spectroscopy measurements that provide direct experimental evidence for the ozonide and establish its propensity for the solution-vapour interface. Theoretical calculations support these findings, showing that water stabilizes the ozonide and lowers the energy of the transition state at neutral pH. Kinetic experiments confirm the dominance of the heterogeneous oxidation route established by this precursor at low, atmospherically relevant ozone concentrations. Taken together, our results provide a strong case of different reaction kinetics and mechanisms of reactions occurring at the aqueous phase-vapour interface compared with the bulk aqueous phase.
Original languageEnglish (US)
JournalNature Communications
Volume8
Issue number1
DOIs
StatePublished - Sep 26 2017
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Chemistry
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface'. Together they form a unique fingerprint.

Cite this