TY - JOUR
T1 - A variational principle for adaptive approximation of ordinary differential equations
AU - Moon, Kyoung Sook
AU - Szepessy, Anders
AU - Tempone, Raul
AU - Zouraris, Georgios E.
PY - 2003/1/1
Y1 - 2003/1/1
N2 - A variational principle, inspired by optimal control, yields a simple derivation of an error representation, global error = Σ local error · weight, for general approximation of functions of solutions to ordinary differential equations. This error representation is then approximated by a sum of computable error indicators, to obtain a useful global error indicator for adaptive mesh refinements. A uniqueness formulation is provided for desirable error representations of adaptive algorithms.
AB - A variational principle, inspired by optimal control, yields a simple derivation of an error representation, global error = Σ local error · weight, for general approximation of functions of solutions to ordinary differential equations. This error representation is then approximated by a sum of computable error indicators, to obtain a useful global error indicator for adaptive mesh refinements. A uniqueness formulation is provided for desirable error representations of adaptive algorithms.
UR - http://www.scopus.com/inward/record.url?scp=0742306487&partnerID=8YFLogxK
U2 - 10.1007/s00211-003-0467-8
DO - 10.1007/s00211-003-0467-8
M3 - Article
AN - SCOPUS:0742306487
SN - 0029-599X
VL - 96
SP - 131
EP - 152
JO - Numerische Mathematik
JF - Numerische Mathematik
IS - 1
ER -