TY - JOUR
T1 - Accelerated variance-reduced methods for saddle-point problems
AU - Borodich, Ekaterina
AU - Tominin, Vladislav
AU - Tominin, Yaroslav
AU - Kovalev, Dmitry
AU - Gasnikov, Alexander
AU - Dvurechensky, Pavel
N1 - KAUST Repository Item: Exported on 2022-10-31
Acknowledgements: This work was supported by a grant for research centers in the field of artificial intelligence, provided by the Analytical Center for the Government of the Russian Federation in accordance with the subsidy agreement (agreement identifier 000000D730321P5Q0002) and the agreement with the Moscow Institute of Physics and Technology dated November 1, 2021 No. 70-2021-00138.
PY - 2022/10/18
Y1 - 2022/10/18
N2 - We consider composite minimax optimization problems where the goal is to find a saddle-point of a large sum of non-bilinear objective functions augmented by simple composite regularizers for the primal and dual variables. For such problems, under the average-smoothness assumption, we propose accelerated stochastic variance-reduced algorithms with optimal up to logarithmic factors complexity bounds. In particular, we consider strongly-convex-strongly-concave, convex-strongly-concave, and convex-concave objectives. To the best of our knowledge, these are the first nearly-optimal algorithms for this setting.
AB - We consider composite minimax optimization problems where the goal is to find a saddle-point of a large sum of non-bilinear objective functions augmented by simple composite regularizers for the primal and dual variables. For such problems, under the average-smoothness assumption, we propose accelerated stochastic variance-reduced algorithms with optimal up to logarithmic factors complexity bounds. In particular, we consider strongly-convex-strongly-concave, convex-strongly-concave, and convex-concave objectives. To the best of our knowledge, these are the first nearly-optimal algorithms for this setting.
UR - http://hdl.handle.net/10754/685260
UR - https://linkinghub.elsevier.com/retrieve/pii/S2192440622000247
UR - http://www.scopus.com/inward/record.url?scp=85140245874&partnerID=8YFLogxK
U2 - 10.1016/j.ejco.2022.100048
DO - 10.1016/j.ejco.2022.100048
M3 - Article
SN - 2192-4414
VL - 10
SP - 100048
JO - EURO Journal on Computational Optimization
JF - EURO Journal on Computational Optimization
ER -