Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations

Paul Martin Mai, Martin Galis, Kiran Kumar Thingbaijam, Jagdish Chandra Vyas, Eric M. Dunham

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.
Original languageEnglish (US)
Pages (from-to)3419-3450
Number of pages32
JournalPure and Applied Geophysics
Volume174
Issue number9
DOIs
StatePublished - Apr 3 2017

Fingerprint

Dive into the research topics of 'Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations'. Together they form a unique fingerprint.

Cite this