TY - JOUR
T1 - Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences
AU - Chen, Peng
AU - Li, Jinyan
AU - Limsoon, Wong
AU - Kuwahara, Hiroyuki
AU - Huang, Jianhua Z.
AU - Gao, Xin
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): GRP-CF-2011-19-P-Gao-Huang, KUS-CI-016-04
Acknowledgements: Grant sponsor: King Abdullah University of Science and Technology (KAUST); Grand numbers: KUS-CI-016-04; GRP-CF-2011-19-P-Gao-Huang.
PY - 2013/7/23
Y1 - 2013/7/23
N2 - Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013 Wiley Periodicals, Inc.
AB - Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013 Wiley Periodicals, Inc.
UR - http://hdl.handle.net/10754/562868
UR - http://doi.wiley.com/10.1002/prot.24278
UR - http://www.scopus.com/inward/record.url?scp=84880667308&partnerID=8YFLogxK
U2 - 10.1002/prot.24278
DO - 10.1002/prot.24278
M3 - Article
C2 - 23504705
SN - 0887-3585
VL - 81
SP - 1351
EP - 1362
JO - Proteins: Structure, Function, and Bioinformatics
JF - Proteins: Structure, Function, and Bioinformatics
IS - 8
ER -