Adaptive Guidance: Training-free Acceleration of Conditional Diffusion Models

Angela Castillo, Jonas Kohler, Juan C. Pérez, Juan Pablo Pérez, Albert Pumarola, Bernard Ghanem, Pablo Arbeláez, Ali Thabet

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper presents a comprehensive study on the role of Classifier-Free Guidance (CFG) in text-conditioned diffusion models from the perspective of inference efficiency. In particular, we relax the default choice of applying CFG in all diffusion steps and instead propose to search for more efficient guidance policies. We formulate the discovery of such policies in the framework of differentiable neural architecture search. Our findings suggest that, as denoising progresses, the updates produced by CFG become increasingly aligned with simple conditional steps, which renders CFG's additional neural network evaluation redundant, especially in the second half of the denoising process. Building upon this insight, we propose “Adaptive Guidance” (AG), an efficient variant of CFG that adaptively omits network evaluations when the denoising process displays convergence. Our experiments demonstrate that AG preserves CFG's image quality while reducing computation by 25%. Thus, AG constitutes a plug-and-play alternative to Guidance Distillation, achieving 50% of the speed-ups of the latter, while being training-free and retaining the capacity to handle negative prompts. We conclude by uncovering further redundancies of CFG in the first half of the diffusion process, showing that entire neural network evaluations can be replaced by simple affine transformations of past score estimates.

Original languageEnglish (US)
Title of host publicationSpecial Track on AI Alignment
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAssociation for the Advancement of Artificial Intelligence
Pages1962-1970
Number of pages9
Edition2
ISBN (Electronic)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOIs
StatePublished - Apr 11 2025
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: Feb 25 2025Mar 4 2025

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number2
Volume39
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period02/25/2503/4/25

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Adaptive Guidance: Training-free Acceleration of Conditional Diffusion Models'. Together they form a unique fingerprint.

Cite this