Adaptive Selection of Primal Constraints for Isogeometric BDDC Deluxe Preconditioners

L. Beirão Da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, Stefano Zampini

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


Isogeometric analysis has been introduced as an alternative to finite element methods in order to simplify the integration of computer-aided design (CAD) software and the discretization of variational problems of continuum mechanics. In contrast with the finite element case, the basis functions of isogeometric analysis are often not nodal. As a consequence, there are fat interfaces which can easily lead to an increase in the number of interface variables after a decomposition of the parameter space into subdomains. Building on earlier work on the deluxe version of the BDDC (balancing domain decomposition by constraints) family of domain decomposition algorithms, several adaptive algorithms are developed in this paper for scalar elliptic problems in an effort to decrease the dimension of the global, coarse component of these preconditioners. Numerical experiments provide evidence that this work can be successful, yielding scalable and quasi-optimal adaptive BDDC algorithms for isogeometric discretizations.
Original languageEnglish (US)
Pages (from-to)A281-A302
Number of pages1
JournalSIAM Journal on Scientific Computing
Issue number1
StatePublished - Feb 23 2017


Dive into the research topics of 'Adaptive Selection of Primal Constraints for Isogeometric BDDC Deluxe Preconditioners'. Together they form a unique fingerprint.

Cite this