Adaptive Sub-Aperture Integration for Wide-Angle Synthetic Aperture Radar

Shahzad Sarwar Gishkori, David Wright, Liam Daniel, Mohammed Aasim Shaikh, Tareq Y. Al-Naffouri, Marina Gashinova, Bernard Mulgrew

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


In this paper, we present an adaptive sub-aperture integration method for wide-angle synthetic aperture radar (SAR) for improved imaging, with emphasis on short-to-medium range applications. In order to avoid full-aperture integration, traditional approaches use fixed-width sub-apertures, which may not conform to the persistence angle of the scatterers. Coherent integration gains over the aperture are possible if integration is carried out over the persistence angle of the scatterers, because integrating shorter than the persistence angle may spread the scattering response across multiple sub-apertures or, conversely, integrating more than the persistence angle may cause noise accumulation along with the useful signal. In this paper, we propose to use change-point detection methods to estimate the persistence widths of the scatterers, and consequently enhance the coherent integration gains, resulting in improved imaging. We compare our proposed methods with the standard integration approaches as well as a recently proposed adaptive integration approach. We provide qualitative and quantitative analyses to prove that our proposed methods outperform the existing approaches. We present experimental results on the real-data of our low-terahertz (THz) radar as well as a publicly available dataset to validate our claims.
Original languageEnglish (US)
Pages (from-to)1-1
Number of pages1
JournalIEEE Transactions on Terahertz Science and Technology
StatePublished - 2021


Dive into the research topics of 'Adaptive Sub-Aperture Integration for Wide-Angle Synthetic Aperture Radar'. Together they form a unique fingerprint.

Cite this