TY - GEN
T1 - Adaptively detecting changes in Autonomic Grid Computing
AU - Zhang, Xiangliang
AU - Germain, Cécile
AU - Sebag, Michèle
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2010/10
Y1 - 2010/10
N2 - Detecting the changes is the common issue in many application fields due to the non-stationary distribution of the applicative data, e.g., sensor network signals, web logs and gridrunning logs. Toward Autonomic Grid Computing, adaptively detecting the changes in a grid system can help to alarm the anomalies, clean the noises, and report the new patterns. In this paper, we proposed an approach of self-adaptive change detection based on the Page-Hinkley statistic test. It handles the non-stationary distribution without the assumption of data distribution and the empirical setting of parameters. We validate the approach on the EGEE streaming jobs, and report its better performance on achieving higher accuracy comparing to the other change detection methods. Meanwhile this change detection process could help to discover the device fault which was not claimed in the system logs. © 2010 IEEE.
AB - Detecting the changes is the common issue in many application fields due to the non-stationary distribution of the applicative data, e.g., sensor network signals, web logs and gridrunning logs. Toward Autonomic Grid Computing, adaptively detecting the changes in a grid system can help to alarm the anomalies, clean the noises, and report the new patterns. In this paper, we proposed an approach of self-adaptive change detection based on the Page-Hinkley statistic test. It handles the non-stationary distribution without the assumption of data distribution and the empirical setting of parameters. We validate the approach on the EGEE streaming jobs, and report its better performance on achieving higher accuracy comparing to the other change detection methods. Meanwhile this change detection process could help to discover the device fault which was not claimed in the system logs. © 2010 IEEE.
UR - http://hdl.handle.net/10754/564313
UR - http://ieeexplore.ieee.org/document/5698017/
UR - http://www.scopus.com/inward/record.url?scp=79951639232&partnerID=8YFLogxK
U2 - 10.1109/GRID.2010.5698017
DO - 10.1109/GRID.2010.5698017
M3 - Conference contribution
SN - 9781424493487
SP - 387
EP - 392
BT - 2010 11th IEEE/ACM International Conference on Grid Computing
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -