Abstract
The Generative Adversarial Network (GAN) has achieved great success in generating realistic (real-valued) synthetic data. However, convergence issues and difficulties dealing with discrete data hinder the applicability of GAN to text. We propose a framework for generating realistic text via adversarial training. We employ a long short-term memory network as generator, and a convolutional network as discriminator. Instead of using the standard objective of GAN, we propose matching the high-dimensional latent feature distributions of real and synthetic sentences, via a kernelized discrepancy metric. This eases adversarial training by alleviating the mode-collapsing problem. Our experiments show superior performance in quantitative evaluation, and demonstrate that our model can generate realistic-looking sentences.
Original language | English (US) |
---|---|
Title of host publication | 34th International Conference on Machine Learning, ICML 2017 |
Publisher | International Machine Learning Society (IMLS)[email protected] |
Pages | 6093-6102 |
Number of pages | 10 |
ISBN (Print) | 9781510855144 |
State | Published - Jan 1 2017 |
Externally published | Yes |