TY - GEN
T1 - Adversarial Generation of Continuous Images
AU - Skorokhodov, Ivan
AU - Ignatyev, Savva
AU - Elhoseiny, Mohamed
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - In most existing learning systems, images are typically viewed as 2D pixel arrays. However, in another paradigm gaining popularity, a 2D image is represented as an implicit neural representation (INR) - an MLP that predicts an RGB pixel value given its (x, y) coordinate. In this paper, we propose two novel architectural techniques for building INR-based image decoders: factorized multiplicative modulation and multi-scale INRs, and use them to build a state-of-the-art continuous image GAN. Previous attempts to adapt INRs for image generation were limited to MNIST-like datasets and do not scale to complex real-world data. Our proposed INR-GAN architecture improves the performance of continuous image generators by several times, greatly reducing the gap between continuous image GANs and pixel-based ones. Apart from that, we explore several exciting properties of the INR-based decoders, like out-of-the-box superresolution, meaningful image-space interpolation, accelerated inference of low-resolution images, an ability to extrapolate outside of image boundaries, and strong geometric prior. The project page is located at https://universome.github.io/inr-gan.
AB - In most existing learning systems, images are typically viewed as 2D pixel arrays. However, in another paradigm gaining popularity, a 2D image is represented as an implicit neural representation (INR) - an MLP that predicts an RGB pixel value given its (x, y) coordinate. In this paper, we propose two novel architectural techniques for building INR-based image decoders: factorized multiplicative modulation and multi-scale INRs, and use them to build a state-of-the-art continuous image GAN. Previous attempts to adapt INRs for image generation were limited to MNIST-like datasets and do not scale to complex real-world data. Our proposed INR-GAN architecture improves the performance of continuous image generators by several times, greatly reducing the gap between continuous image GANs and pixel-based ones. Apart from that, we explore several exciting properties of the INR-based decoders, like out-of-the-box superresolution, meaningful image-space interpolation, accelerated inference of low-resolution images, an ability to extrapolate outside of image boundaries, and strong geometric prior. The project page is located at https://universome.github.io/inr-gan.
UR - http://www.scopus.com/inward/record.url?scp=85123167959&partnerID=8YFLogxK
U2 - 10.1109/CVPR46437.2021.01061
DO - 10.1109/CVPR46437.2021.01061
M3 - Conference contribution
AN - SCOPUS:85123167959
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 10748
EP - 10759
BT - Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PB - IEEE Computer Society
T2 - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Y2 - 19 June 2021 through 25 June 2021
ER -