TY - GEN
T1 - Aerial LiDAR-based 3D Object Detection and Tracking for Traffic Monitoring
AU - Cherif, Baya
AU - Ghazzai, Hakim
AU - Alsharoa, Ahmad
AU - Besbes, Hichem
AU - Massoud, Yehia
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - The proliferation of Light Detection and Ranging (LiDAR) technology in the automotive industry has quickly promoted its use in many emerging areas in smart cities and internet-of-things. Compared to other sensors, like cameras and radars, LiDAR provides up to 64 scanning channels, vertical and horizontal field of view, high precision, high detection range, and great performance under poor weather conditions. In this paper, we propose a novel aerial traffic monitoring solution based on Light Detection and Ranging (LiDAR) technology. By equipping unmanned aerial vehicles (UAVs) with a LiDAR sensor, we generate 3D point cloud data that can be used for object detection and tracking. Due to the unavailability of LiDAR data from the sky, we propose to use a 3D simulator. Then, we implement PointVoxel-RCNN (PV-RCNN) to perform road user detection (e.g., vehicles and pedestrians). Subsequently, we implement an Unscented Kalman filter, which takes a 3D detected object as input and uses its information to predict the state of the 3D box before the next LiDAR scan gets loaded. Finally, we update the measurement by using the new observation of the point cloud and correct the previous prediction's belief. The simulation results illustrate the performance gain (around 8 %) achieved by our solution compared to other 3D point cloud solutions.
AB - The proliferation of Light Detection and Ranging (LiDAR) technology in the automotive industry has quickly promoted its use in many emerging areas in smart cities and internet-of-things. Compared to other sensors, like cameras and radars, LiDAR provides up to 64 scanning channels, vertical and horizontal field of view, high precision, high detection range, and great performance under poor weather conditions. In this paper, we propose a novel aerial traffic monitoring solution based on Light Detection and Ranging (LiDAR) technology. By equipping unmanned aerial vehicles (UAVs) with a LiDAR sensor, we generate 3D point cloud data that can be used for object detection and tracking. Due to the unavailability of LiDAR data from the sky, we propose to use a 3D simulator. Then, we implement PointVoxel-RCNN (PV-RCNN) to perform road user detection (e.g., vehicles and pedestrians). Subsequently, we implement an Unscented Kalman filter, which takes a 3D detected object as input and uses its information to predict the state of the 3D box before the next LiDAR scan gets loaded. Finally, we update the measurement by using the new observation of the point cloud and correct the previous prediction's belief. The simulation results illustrate the performance gain (around 8 %) achieved by our solution compared to other 3D point cloud solutions.
KW - deep learning
KW - detection
KW - LiDAR
KW - tracking
KW - Traffic monitoring
KW - UAV
UR - http://www.scopus.com/inward/record.url?scp=85167689321&partnerID=8YFLogxK
U2 - 10.1109/ISCAS46773.2023.10181371
DO - 10.1109/ISCAS46773.2023.10181371
M3 - Conference contribution
AN - SCOPUS:85167689321
T3 - Proceedings - IEEE International Symposium on Circuits and Systems
BT - ISCAS 2023 - 56th IEEE International Symposium on Circuits and Systems, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 56th IEEE International Symposium on Circuits and Systems, ISCAS 2023
Y2 - 21 May 2023 through 25 May 2023
ER -