Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts

Anna Edlinger, Gina Garland, Kyle Hartman, Samiran Banerjee, Florine Degrune, Pablo García-Palacios, Sara Hallin, Alain Valzano-Held, Chantal Herzog, Jan Jansa, Elena Kost, Fernando T. Maestre, David Sánchez Pescador, Laurent Philippot, Matthias C. Rillig, Sana Romdhane, Aurélien Saghaï, Ayme Spor, Emmanuel Frossard, Marcel G.A. van der Heijden*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

81 Scopus citations

Abstract

Phosphorus (P) acquisition is key for plant growth. Arbuscular mycorrhizal fungi (AMF) help plants acquire P from soil. Understanding which factors drive AMF-supported nutrient uptake is essential to develop more sustainable agroecosystems. Here we collected soils from 150 cereal fields and 60 non-cropped grassland sites across a 3,000 km trans-European gradient. In a greenhouse experiment, we tested the ability of AMF in these soils to forage for the radioisotope 33P from a hyphal compartment. AMF communities in grassland soils were much more efficient in acquiring 33P and transferred 64% more 33P to plants compared with AMF in cropland soils. Fungicide application best explained hyphal 33P transfer in cropland soils. The use of fungicides and subsequent decline in AMF richness in croplands reduced 33P uptake by 43%. Our results suggest that land-use intensity and fungicide use are major deterrents to the functioning and natural nutrient uptake capacity of AMF in agroecosystems.

Original languageEnglish (US)
Pages (from-to)1145-1154
Number of pages10
JournalNature Ecology and Evolution
Volume6
Issue number8
DOIs
StatePublished - Aug 2022

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology

Fingerprint

Dive into the research topics of 'Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts'. Together they form a unique fingerprint.

Cite this