Alternating minimization algorithm with iteratively reweighted quadratic penalties for compressive transmission tomography

Yan Kaganovsky, Soysal Degirmenci, Shaobo Han, Ikenna Odinaka, David G. Politte, David J. Brady, Joseph A. O'Sullivan, Lawrence Carin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We propose an alternating minimization (AM) algorithm for estimating attenuation functions in X-ray transmission tomography using priors that promote sparsity in the pixel/voxel differences domain. As opposed to standard maximum-a-posteriori (MAP) estimation, we use the automatic relevance determination (ARD) framework. In the ARD approach, sparsity (or compressibility) is promoted by introducing latent variables which serve as the weights of quadratic penalties, with one weight for each pixel/voxel; these weights are then automatically learned from the data. This leads to an algorithm where the quadratic penalty is reweighted in order to effectively promote sparsity. In addition to the usual object estimate, ARD also provides measures of uncertainty (posterior variances) which are used at each iteration to automatically determine the trade-off between data fidelity and the prior, thus potentially circumventing the need for any tuning parameters. We apply the convex decomposition lemma in a novel way and derive a separable surrogate function that leads to a parallel algorithm. We propose an extension of branchless distance-driven forward/back-projections which allows us to considerably speed up the computations associated with the posterior variances. We also study the acceleration of the algorithm using ordered subsets.
Original languageEnglish (US)
Title of host publicationProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Publisher[email protected]
ISBN (Print)9781628415032
DOIs
StatePublished - Jan 1 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'Alternating minimization algorithm with iteratively reweighted quadratic penalties for compressive transmission tomography'. Together they form a unique fingerprint.

Cite this