Abstract
One straightforward metric to evaluate a survival prediction model is based on the Mean Absolute Error (MAE) - the average of the absolute difference between the time predicted by the model and the true event time, over all subjects. Unfortunately, this is challenging because, in practice, the test set includes (right) censored individuals, meaning we do not know when a censored individual actually experienced the event. In this paper, we explore various metrics to estimate MAE for survival datasets that include (many) censored individuals. Moreover, we introduce a novel and effective approach for generating realistic semi-synthetic survival datasets to facilitate the evaluation of metrics. Our findings, based on the analysis of the semi-synthetic datasets, reveal that our proposed metric (MAE using pseudo-observations) is able to rank models accurately based on their performance, and often closely matches the true MAE - in particular, is better than several alternative methods.
Original language | English (US) |
---|---|
Pages | 28244-28276 |
Number of pages | 33 |
State | Published - 2023 |
Event | 40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States Duration: Jul 23 2023 → Jul 29 2023 |
Conference
Conference | 40th International Conference on Machine Learning, ICML 2023 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 07/23/23 → 07/29/23 |
ASJC Scopus subject areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability