An estimate of energy dissipation due to soil-moisture hysteresis

H. McNamara

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Processes of infiltration, transport, and outflow in unsaturated soil necessarily involve the dissipation of energy through various processes. Accounting for these energetic processes can contribute to modeling hydrological and ecological systems. The well-documented hysteretic relationship between matric potential and moisture content in soil suggests that one such mechanism of energy dissipation is associated with the cycling between wetting and drying processes, but it is challenging to estimate the magnitude of the effect in situ. The Preisach model, a generalization of the Independent Domain model, allows hysteresis effects to be incorporated into dynamical systems of differential equations. Building on earlier work using such systems with field data from the south-west of Ireland, this work estimates the average rate of hysteretic energy dissipation. Through some straightforward assumptions, the magnitude of this rate is found to be of O(10-5) W m-3. Key Points Hysteresis in soil-water dissipates energy The rate of dissipation can be estimated directly from saturation data The rate of heating caused is significant ©2013. American Geophysical Union. All Rights Reserved.
Original languageEnglish (US)
Pages (from-to)725-735
Number of pages11
JournalWater Resources Research
Issue number1
StatePublished - Jan 29 2014
Externally publishedYes


Dive into the research topics of 'An estimate of energy dissipation due to soil-moisture hysteresis'. Together they form a unique fingerprint.

Cite this